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Abstract

A wave-based method is presented for the analysis of high-frequency vibrations in complex structures.
The response of the structure to external forcing is described in terms of generalised, energy-bearing wave
components, and the structure is represented by global subsystem and junction wave component scattering
matrices, S and T: Uncertainty in the properties of the structure is taken into account by assuming that the
structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’
ensemble is defined in terms of random eigenvalues of the product ST of the scattering matrices, and
analytical expressions are derived for the average and variance of the energy responses over this ensemble.
The scalar random phase ensemble is thought to be a reasonable approximation to many practical
ensembles and the approach provides a means for estimating response statistics at relatively low
computational cost.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Of the techniques which are used to predict the vibrational response of mechanical structures to
external forcing, most are based on idealised mathematical models and an assumption that details
of the structure and applied forces are known exactly. However, these approaches are not
see front matter r 2004 Elsevier Ltd. All rights reserved.
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appropriate for ‘complex’ structures involving high-frequency excitation and significant structural
uncertainty.
The limitations of traditional approaches arise, in part, from the short-wavelength nature of the

response of the structure at high frequencies and the sensitivity of this response to variations in
structural detail. Since the accuracy with which this detail can be specified or easily measured is
always limited in practice, and since some approximation is inevitably present in the equations
upon which the model is based, differences between the structure and its mathematical model can
lead to significant differences between actual and predicted responses.
A further difficulty relates to the spatial resolution of results provided by ‘exact’ methods.

Although the response is calculated at locations which are typically much less than a wavelength
apart, this resolution cannot be justified in terms of the uncertainty inherent in the modelling
process. The process therefore involves data which are informationally redundant and wasted
computational effort.
Traditional approaches are also limited by the potentially very large volumes of data and

computational expense of analyses at high frequencies. For many problems of interest, the
computational cost of the task is prohibitive or simply beyond the capacity of modern computers.
It follows from these concerns that an ideal analysis approach should satisfy a ‘conservation of

information’ principle where the amount of information in the predicted response is consistent
with that available in the input to the modelling process. The method should also be
computationally efficient and not, for example, involve the calculation of informationally
unjustified detail at any stage.
Statistical Energy Analysis (SEA) [1,2] is the best known of the methods which have been

developed for complex structures. In SEA, only limited account is taken of structural detail—the
structure is notionally divided into subsystems and the response of the system to external forcing
is described in terms of the temporal and spatial averages of subsystem energies. Each of the
subsystems is assumed to have been drawn from an ensemble of subsystems which differ
randomly in detail, and the principal quantity of interest is generally the average response over the
ensemble. However, the validity of various assumptions which form the basis of traditional SEA is
often unclear in any given situation and has been the subject of considerable investigation (see
Refs. [2,3], for example).
An alternative approach is presented in this paper, which avoids a number of assumptions of

traditional SEA. In Section 2, the response of the structure to external forcing is given in terms of
energy-bearing ‘wave components’ which, as described in a companion paper [4], propagate
through the structure and undergo reflection and transmission at junctions and subsystems.
Relationships between the amplitudes of wave components at the various cross-sections
throughout the structure are expressed in terms of global subsystem and junction scattering
matrices S and T; which are systematically assembled from local reflection and transmission
coefficients. The dynamic properties of the structure are described both in terms of the matrix
product ST and of the eigenvalues and eigenvectors of ST:
Structural uncertainty is modelled in Section 3 by assuming that the structure at hand is drawn

from an ensemble of random structures. Variations in structural properties lead to changes in the
spectral properties of ST and the relationship between these kinds of variation is examined in
Section 4, in detail for a simple structure comprising two subsystems and qualitatively for more
general structures. The dependence of the response of the structure on variations in the
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eigenvalues and eigenvectors is investigated in Section 5. It is observed that the energy response of
the structure is particularly sensitive to changes in the phases of the eigenvalues of ST:
An ensemble, referred to as the ‘scalar random phase’ ensemble, is defined in terms of certain

assumed distributions of eigenvalue phases in Section 6. Analytical expressions are derived for the
average and variance of the energy responses over this ensemble. The scalar random phase
ensemble is thought to be a reasonable approximation to many practical ensembles and allows
response statistics to be found at relatively low computational cost. Application of the method to
an example structure of two coupled plates is described in a second companion paper [5], where
good agreement is demonstrated between predicted statistics and those found by numerical Monte
Carlo methods.
2. The deterministic wave component model

The deterministic wave component model which forms the basis of the present approach is
described in detail in a companion paper [4]. Its key features are reviewed in this section.
As in traditional SEA, the structure is divided into subsystems and external forces acting on

different subsystems are assumed to be random, stationary and uncorrelated. The vibrational
response of the structure is described in terms of the time-averaged energies of the subsystems and
the energy flows between subsystems. For each subsystem X, an energy balance equation can be
written, which has the form

Pin;X ¼ Pjunc;X þ Pdiss;X ; (1)

where Pin;X and Pdiss;X are input and dissipated powers, respectively, and Pjunc;X is the total power
lost by subsystem X to neighbouring subsystems via junctions. It is assumed that no energy is
dissipated in the junctions. The energy which is dissipated in any subsystem is given, to a good
approximation, by

Pdiss;X ¼ oZX EX ; (2)

where EX is the energy of the subsystem and ZX is the subsystem loss factor.
The flow of energy through the structure is described in terms of propagating, energy-bearing

wave components which can be defined at cross-sections of the structure using the method of
separation of variables [6] in such a way that the total cross-sectional energy flow is the sum of
individual wave component flows. It is assumed that energy flow associated with interactions
between near-fields can be neglected.
The relationship between wave components at the various cross-sections in the structure can be

expressed in terms of scattering matrices. If the vectors aþ and a� denote the power amplitudes of
wave components leaving and entering any given subsystem via junctions, and if e denotes the
vector of power amplitudes of ‘excitation’ wave components generated within the subsystem by
external forces, then a subsystem scattering matrix S can be defined so that

aþ ¼ Sa� þ e: (3)

Junctions can be similarly characterised by a scattering matrix T so that

a� ¼ Taþ: (4)
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(The superscripts ‘þ’ and ‘�’ are used throughout this paper to denote to wave components
incident on junctions and incident on subsystems, respectively.)
A compact description of wave component reflection and transmission throughout the structure

is found by considering augmented amplitude vectors for incident and emerging wave components
at all cross-sections. Global subsystem and junction scattering matrices are then constructed for
the entire structure from the entries of the scattering matrices of individual subsystems and
junctions. With S and T redefined as global scattering matrices, Eqs. (3) and (4) can also be
interpreted as describing global scattering.
It follows from the global forms of Eqs. (4) and (3) that

aþ ¼ ðI� STÞ�1 e; (5)

where I is the identity matrix. In terms of A; the adjoint of ðI� STÞ; and D; its determinant,

aþ ¼ Ae =D: (6)

The amplitudes of the wave components emerging from all subsystems are expressed in Eq. (5) as
the product of two factors of which the first, ðI� STÞ�1; represents the dynamic properties of the
whole structure and the second, e; represents the details of excitation.
A sub-vector of amplitudes corresponding to the group of wave components directly incident

on junctions from within subsystem X can be defined so that

aþX ¼ AX� e =D; (7)

where AX� is used to denote the rows of A associated with wave components in X. A vector of the
wave component powers incident on junctions from X can then be written as

Pinc;X ¼ diagðaþX aþHX Þ= 2 (8)

and, with a sub-vector a�X defined for the amplitudes of components leaving X, the power lost
from X via junctions can be written as

Pjunc;X ¼ diagðaþX aþHX � a�X a�HX Þ= 2: (9)

If the subsystem is not directly driven by external forces, eX ¼ 0; and

aþX ¼ SXa
�
X ; (10)

where SX is the subsystem scattering matrix. The total junction power is then

Pjunc;X ¼ aþHX ½I� ðSXS
H
X Þ

�1
�aþX= 2: (11)

In almost all systems of practical interest, the matrix ðSXS
H
X Þ

�1 is strongly diagonally dominant.
By defining D2

X as the diagonal matrix obtained by setting off-diagonal entries of ðSXS
H
X Þ

�1 to
zero, it then follows that the junction power for the indirectly driven subsystem is given to good
approximation by

Pjunc;X 	 PT
inc;X diagðI�D2

X Þ: (12)

If external forces act only on a single subsystem, the junction power for this subsystem can be
found from the knowledge that the sum of junction powers over all subsystems is zero.
The response energy EX can thus be found in terms of the excitation wave component

amplitudes and the scattering matrices S and T—the incident and junction powers are found from
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the wave component amplitudes through Eqs. (7), (8) and (12), and EX is found through Pdiss;X

given by Eq. (2) and the power balance equation (1).
3. Ensembles of structures

Uncertainty in the properties of complex structures leads naturally to the concept of an
ensemble of structures with random properties and to a probabilistic description of structural
responses. This uncertainty can be formally quantified in a joint probability density function f ðxÞ

which specifies the probability of occurrence of any combination of the uncertain structural
parameters x ¼ ½xi� in the ensemble. The kth moment of a response quantity such as the energy
flow PðxÞ is then given in principle by

PðkÞ ¼

Z
PkðxÞ f ðxÞdx: (13)

For most practical applications, the number of uncertain parameters is large, derivation or
measurement of the joint probability density function is not practicable and evaluation of the
integral in Eq. (13) is not possible, or is computationally very expensive. However, the main
requirements of the probabilistic approach are only that the chosen ensemble reproduce the
probability of occurrence of particular energy flows in real-world structures, and that it lead to
mathematical expressions of tractable form. Alternative approaches are therefore possible—for
example, those in which the ensemble is defined instead in terms of the joint probability density
function of dynamic properties of the structure. In traditional SEA, the ensemble is associated
with a particular distribution of natural frequencies. Elsewhere, structural uncertainty has been
described in terms of the random phases of wave propagation and scattering coefficients [7]. In the
approach taken here, ensembles are viewed in terms of the variations in the eigenvalues and
eigenvectors of ST:
4. Spectral decomposition

An ensemble of structures can be described in terms of the wave component model by random
variations in the system matrix ST: Since this matrix can be decomposed as

ST ¼ VKV�1; (14)

where V is a square matrix in which each column is an eigenvector of ST and K ¼ diag li½ � is the
corresponding diagonal matrix of eigenvalues, it follows that the ensemble can also be described
in terms of variations in eigenvalues and eigenvectors.
In this section, the characteristics of the variations in eigenvalues and eigenvectors associated

with realistic ensemble variations in structural properties are examined. An elementary structure
comprising two one-dimensional subsystems is firstly investigated in detail, and then qualitative
observations are made for more general structures.
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4.1. Two coupled one-dimensional subsystems

Consider a structure comprising two coupled regular, dynamically one-dimensional [4]
subsystems as illustrated in Fig. 1. A system matrix can be constructed for this structure, which
has the form

ST ¼
sA rA sA t

sB t sB rB

" #
; (15)

where sA and sB are subsystem reflection coefficients, rA and rB are junction reflection coefficients
and t is the junction transmission coefficient.
The two products sA rA and sB rB are propagation factors associated with the passage of wave

components over circuits of subsystems A and B, respectively. If the coupling is assumed to be
conservative, these products can be expressed as

sA rA ¼ jsAjR ei ðy�d=2Þ and sB rB ¼ jsBjR ei ðyþd=2Þ (16)

where y is the ‘common’ component of phase, d is the phase separation and R ¼ jrAj ¼ jrBj: The
two eigenvalues of ST are given by

l1;2 ¼ ei y a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � jsA sBj

p� �
; (17)

where

a ¼ R jsAj e
�i d=2 þ jsBj e

i d=2
� �

= 2: (18)

It has been observed elsewhere [7] that typical changes in structural parameters are generally
associated with only small relative variations in the magnitudes of sA rA and sB rB; but with
variations in their phases which are often large compared with 2p: It is of interest, therefore, to
examine the dependence of the eigenvalues on the phases of sA rA and sB rB:
4.1.1. Magnitudes of eigenvalues
The magnitudes of the two eigenvalues are independent of the common phase y:

Magnitude extrema occur, as illustrated in Fig. 2, when sA rA and sB rB are in anti-phase and
d ¼ p: The example corresponds to mA ¼ 0:1 and mB ¼ 0:01; where the subsystem attenuation
parameter m is defined so that jsj ¼ expð�mÞ: The difference between the two extreme magnitudes
is given by

jlmaxj � jlminj ¼ R jjsAj � jsBjj: (19)
subsystem A

junction

subsystem B

Fig. 1. Two coupled uniform, one-dimensional subsystems, A and B:
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Fig. 2. Eigenvalue magnitude as a function of phase separation d for a structure with mA ¼ 0:1; mB ¼ 0:01 and R ¼ 0:5:
(Note the origin of the vertical scale.)
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For the special group of structures which have jsAj ¼ jsBj ¼ jsj; the eigenvalues given in Eq. (17)
can be expressed as

l1;2 ¼ ei y jsj R cosðd=2Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2 cos2ðd=2Þ

q	 

(20)

or, since the factor in large brackets has unit magnitude, as

l1;2 ¼ ei y jsj e�i f=2; (21)

where f is the phase angle between the two eigenvalues. For these structures, jl1;2j ¼ jsj and the
magnitudes of the eigenvalues are independent of variations in the phases of sA rA and sB rB and
independent of R. If the structure has no damping, jsAj ¼ jsBj ¼ 1 and jl1;2j ¼ 1:

4.1.2. Phases of eigenvalues
It follows from Eq. (17) that the common phase y of sA rA and sB rB corresponds also to the

common phase of the two eigenvalues. The phase separation f between the eigenvalues is given by

cos f ¼ ðjl1 þ l2j2 � ðjl1j2 þ jl2j2ÞÞ = 2 jl1l2j: (22)

For structures which have jsAj ¼ jsBj ¼ jsj; this equation can be written as

cosðf=2Þ ¼ R cosðd=2Þ: (23)

Examples of the dependence of the phase separation of the eigenvalues on the phase difference
between sA rA and sB rB are shown for these structures in Fig. 3. The maximum possible separation
between the eigenvalues occurs when d ¼ p and sA rA and sB rB are in anti-phase. The eigenvalues
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Fig. 3. Phase spacing f between eigenvalues as a function of phase difference d between sA rA and sB rB for a structure
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cannot approach each other arbitrarily closely and have a minimum phase separation fmin ¼

2 cos�1 R; which occurs when d ¼ 0 and sA rA and sB rB have the same phase.
The phase spacing between eigenvalues in structures with jsAj ¼ jsBj is determined only by the

magnitude of the junction reflection coefficient R. At one extreme when R ¼ 1; the subsystems are
weakly connected, the phases of the two pairs of eigenvalues are independent with

l1 ¼ sA rA and l2 ¼ sB rB; (24)

and all phase separations are possible. Each eigenvalue is then uniquely associated with one of the
subsystems. At the other extreme, when R 	 0; the connection between subsystems is strong and
the eigenvalues,

l1;2 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA sB t2

p
; (25)

are always in anti-phase. The quantity sA sB t2 is the propagation factor associated with the
passage of a wave component over a circuit of the whole structure.
For more general structures in which jsAj and jsBj are not the same, the distribution of possible

phase spacings between eigenvalues depends on R and, to an often smaller extent, on jsAj and jsBj:
The observations made above apply qualitatively to these structures also.
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4.1.3. Eigenvectors

For structures with jsAj ¼ jsBj; the eigenvector matrix is given by

V ¼
X �Y e�i d=2

Y ei d=2 X

" #
; (26)

where X and Y satisfy

X 2; Y 2 ¼ 1
2

1�
R sinðd=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2 cos2ðd=2Þ
q

0
B@

1
CA: (27)

The amplitudes of the eigenvectors in the two subsystems are functions of both R and d; but do
not depend on jsj or the level of damping in the structure. When jsAjajsBj; damping has an effect
on these shapes which is generally small. The eigenvectors are independent of the common phase
y; even when jsAjajsBj:
Examples of the dependence of X and Y on the phase difference d between sArA and sBrB are

shown in Fig. 4 for a range of values of the reflection coefficient R. For structures in which R is
small, the subsystems are strongly connected, eigenvector amplitudes are approximately equal in
the two subsystems and the eigenvectors are ‘global’ in nature. This is the case for all values of d:
For structures in which R is not small, the eigenvector amplitudes tend, for most values of d; to be
large in one subsystem and small in the other. The eigenvectors are then ‘localised’ in one or other
of the two subsystems. The eigenvector forms are complementary in that if one eigenvector has
large amplitude in A, then the other has small amplitude there and vice versa. Localisation is
-1 -0.5 0 0.5 1
0

0.2
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δ/π
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Fig. 4. Dependence of eigenvector magnitudes on the phase difference d; for R ¼ 0:95 (——) and R ¼ 0:2 (- - - -).
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strongest when the separation between eigenvalues is a maximum, and the eigenvector amplitudes
are equal in the two subsystems when the eigenvalues are at their closest.

4.1.4. Summary

The observations made in this section can be summarised as follows. It has been noted in Ref.
[7] that a realistic ensemble of two one-dimensional subsystems can be defined by assuming that
the magnitudes of sA rA and sB rB are constant but that their phases are independent random
variables, uniformly distributed in ½�p;p�: In terms of the spectral parameters of the matrix ST; it
is observed that, in most cases, the magnitudes of eigenvalues and the eigenvectors vary little over
this ensemble, while the common eigenvalue phase is random and uniformly distributed in ½�p;p�:
If the junction reflection coefficient R 	 1; the phases of the eigenvalues are approximately
independent and the eigenvectors are generally localised. If R 	 0; on the other hand, the two
eigenvalues are relatively rigidly locked in anti-phase and the eigenvectors are generally global in
nature.

4.2. General structures

For more general structures, the characteristics of variations in the eigenvalues and eigenvectors
of ST associated with typical ensemble variations in the structural properties are difficult to
quantify. However, many of the observations made in the previous section for two coupled one-
dimensional subsystems are found, at least qualitatively, to hold for more complex systems also.

4.2.1. Common eigenvalue phase
As for the simple case of two subsystems, it is useful to consider the variations in the phases of

the n eigenvalues of a more general structure in terms of a common phase y and n � 1 eigenvalue
phase separations. A common variation in the phases of the eigenvalues has the form ei yK; and is
associated with changes in the system matrix which satisfy V ðei yKÞV�1 ¼ ei y ST: This change
leaves the magnitudes of all the entries of ST unchanged, but increases the phase of each entry
by y:

4.2.2. Eigenvalue phase separation
In the earlier example involving pairs of one-dimensional subsystems, it was observed that the

two eigenvalues cannot approach each other arbitrarily closely as structural properties vary. For
perturbations of more general structures involving greater numbers of eigenvalues, the
eigenvalues appear to display a ‘mutual repulsion’ analogous to that which has been observed
in other contexts where eigenvalues correspond to natural vibration frequencies of rooms and
engineering structures, or where the eigenvalues correspond to the energy levels of heavy nuclei
(see, for example, Refs. [1,8–10]).
Although considerable research has been carried out in establishing the statistical properties of

eigenvalues of various random matrix ensembles (see Ref. [11], for example), most is relevant here
only for a restricted class of mechanical structures.
One of these is the circular unitary ensemble (CUE), which comprises the group of all unitary

matrices of a given, high order. In the present context, such matrices are associated with
undamped structures involving many wave components. Its relevance is limited, however, by the
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large ‘volume’ of the ensemble which, due to the inclusion of every possible unitary system matrix
of a given order, encompasses an extremely wide range of structural variation.
The eigenvalues of matrices in the CUE have unit magnitude and can be written as ei fi ;

i ¼ 1; :::; n: Dyson [10], who carried out the first detailed investigation of this ensemble, made
extensive use of an analogy involving electrostatic charges on a thin circular conducting wire. The
charges, identified by the angles f1; . . . ;fn; were assumed to repel each other according to the
Coulomb law of two-dimensional electrostatics. The probability distributions of the eigenvalue
phases and the electrostatic charges are the same, reinforcing the concept of eigenvalue
‘repulsion’.
A further probability distribution of interest is that associated with structures in which there is

no interaction between the eigenvalues. The nearest-neighbour eigenvalue phase-spacing
probability density function for this ensemble is given by f ðsÞ ¼ ð1� s=nÞn�2 ðn � 1Þ=n; where
s ¼ f=favg [12]. When the number of eigenvalues n is large and the circular nature of the ensemble
becomes less significant, the probability density function becomes f ðsÞ ¼ e�s: This is the more
familiar form of the Poisson distribution corresponding to the situation in which the expected
value of s is 1.
The distribution of eigenvalue phase spacings given by the CUE is in some sense intermediate

between the two extremes in which eigenvalues are either rigidly spaced, or, as in the circular
Poisson ensemble, completely unconstrained. It is thought that the distribution of spacings in the
CUE is representative of those of the matrix ST corresponding to structures which are in some
sense ‘maximally irregular’.
4.2.3. Eigenvectors

Considerably less information is available concerning the statistical variations of eigenvectors
in random matrix ensembles. This is generally because the detailed ensemble behaviour of
eigenvectors has not been relevant to the problems investigated so far and, indeed, this is to some
extent the case here also. However, a number of general observations can be made regarding the
sensitivities of eigenvectors to changes in structural detail, which are based on the results of
standard perturbational analysis methods [13].
It is found that the eigenvector vi associated with eigenvalue li is relatively insensitive to

structural changes if li is far from other eigenvalues and the ‘condition’ of each eigenvalue is
small. The condition of an eigenvalue is large when ST is ‘near’ to a matrix which has a multiple
eigenvalue. The condition is a minimum, and the eigenvector sensitivity is relatively low, when ST
is a normal matrix. This includes structures without damping, since for these ST is unitary and
therefore normal, but also includes the structures comprising two one-dimensional subsystems
with jsAj ¼ jsBj described earlier.
4.3. Spectral parameters and structural variations

The sensitivity of eigenvalues and eigenvectors to structural changes is determined, in large
part, by what may be termed the ‘connection strength’ within the structure. This refers to the ease
with which energy passes between subsystems and corresponds loosely to the magnitude of the
transmission coefficient of the junction which joins the subsystems.
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Consider an idealised structure in which most parts of the structure are weakly connected to all
others. The interaction between eigenvalues is then weak and the phase spacing between them is
distributed approximately according to the circular Poisson ensemble. Eigenvectors associated
with these structures are generally strongly localised and can be relatively sensitive to
perturbations of the structure.
In an idealised structure involving strong connections on the other hand, the repulsion between

eigenvalues is strong and there is relatively little variation in eigenvalue spacing. The amplitudes
of the eigenvectors of these structures are distributed approximately uniformly over the
structure and, overall, the sensitivity of all the spectral parameters to structural perturbations is
generally small.
5. Ensemble variations of energy flow

Ensemble variations in structural properties, which can be expressed in terms of variations in
the eigenvalues and eigenvectors of ST; lead to variations in structural responses. In this section,
previously derived equations describing structural responses are recast in a form that highlights
the roles of the spectral parameters. It is found that variations in response are due, in large part, to
the sensitivity of the response to changes in the common component of the eigenvalue phases.
It follows from Eq. (12) that the power lost by subsystem X to neighbouring subsystems when

subsystem Y is excited can be expressed as

Pjunc; XY ¼ PT
inc;XY diagðI�D2

X Þ; (28)

where Pinc;XY is the vector of powers incident on the junctions of X due to excitation of Y. The
diagonal entries of D2

X correspond to column sums of the squares of the magnitudes of the entries
of S�1

X ; where SX is the scattering matrix for subsystem X. These magnitudes are largely
determined by the level of damping in X and are relatively insensitive to structural perturbations.
It can be assumed, therefore, that D2

X is constant over the ensemble and that ensemble variations
in Pjunc; XY arise only through the effects of ensemble variations in the incident powers Pinc;XY :
The global vector of powers incident on all junctions is given by

Pinc ¼ diag AeeHAH
� �

= 2 jDj2; (29)

where A=D ¼ ðI� STÞ�1: Eq. (29) can be re-written in terms of the eigenvalues and eigenvectors
of ST as

Pinc ¼
1
2
diag V ðI� KÞ

�1V�1 eeHV�1H I� Kð Þ
�1HVH

� �
: (30)

The powers incident on the junctions of subsystem X due to excitation of subsystem Y are then

Pinc; XY ¼ 1
2
diag VX� ðI� KÞ

�1UH
Y� eYe

H
Y UY� ðI� KÞ

�1HVH
X�

� �
; (31)

where UH ¼ V�1 and where VX� and UY� denote the rows of V and U associated with wave
components in subsystems X and Y, respectively. By further defining the eigenvalue-dependent
vector g ¼ diag ðI� KÞ

�1 and collecting g and its Hermitian transpose gH; Eq. (31) can be
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re-written as

Pinc; XY ¼ 1
2
diagðVX� ½ ðU

H
Y� eYe

H
Y UY�Þ  ðgg

HÞ �VH
X� Þ; (32)

where ‘’ denotes the Hadamard or entry-wise matrix product.
The incident power associated with a particular wave component x in X is

Pinc; xY ¼ 1
2

X
y2Y

jeyj
2Vx� ½ ðU

H
y�Uy�Þ  ðgg

HÞ �VH
x�; (33)

where it has been noted that for suitably large subsystems driven by rain-on-the-roof excitation,
eYe

H
Y is diagonal. Eigenvector-related factors can be gathered to give

Pinc; xY ¼ 1
2

X
y2Y

jeyj
2
Xn

i;j¼1

½ ðUy�  V
�
x�Þ

H
ðUy�  V

�
x�Þ�  ðgg

HÞ; (34)

where the summation indicated by
P

ij is understood to be over all the entries of its n � n matrix
summand, n is the order of ST and � denotes the complex conjugate.
Each of the terms ½ ðUy�  V

�
x�Þ

H
ðUy�  V

�
x�Þ�  ðgg

HÞ in Eq. (34) quantifies the ease with which
energy is transmitted between wave components x and y, and is formed from the entry-wise
product of an eigenvector-dependent matrix and an eigenvalue-dependent matrix. The latter, ggH;
is common to all wave component pairs, while the former depends on the specific participation of
the wave components in the eigenvectors. In the following sections, the influences of eigenvalue-
and eigenvector-related factors will be investigated.
5.1. Eigenvalue-related influences

Eqs. (28) and (34) show, respectively, that junction and incident powers depend on the
eigenvalues of ST only through the Hermitian outer product ggH; where

ggH ¼
1

ð1� liÞð1� l�j Þ

" #
(35)

and i; j ¼ 1; . . . ; n: In this section, ensemble variations in the individual entries of this matrix and
ensemble variations in the overall form of the matrix are examined in turn.
5.1.1. Ensemble characteristics of individual entries of ggH

The entries of ggH are highly sensitive to the locations of the pair of eigenvalues li; lj in the
complex eigenvalue plane and, in particular, to their proximity to the singularity at l ¼ 1: The
sensitivity of the energy flow to ensemble variations in structural properties is due in great part to
the often highly nonlinear dependence of ggH; via the eigenvalues, on these variations.
As noted in Section 4, the magnitudes of the eigenvalues generally vary little over the ensemble.

Since the sensitivity of ggH to structural variations is most closely associated with the sensitivity of
the phases of the eigenvalues, it is convenient to assume that the magnitudes of eigenvalues are
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constant and to investigate the function

Gðfi;fjÞ ¼
1

ð1� jlijei fiÞð1� jljje
�i fj Þ

(36)

over the plane defined by the two eigenvalue phases fi and fj: As in Section 4, the phases of
eigenvalues can be expressed in terms of common and separation components defined,
respectively, by y ¼ ðfi þ fjÞ= 2 and f ¼ fi � fj: Eq. (36) can then be re-written as

Gðy;fÞ ¼
1

1� ðjlijei y þ jljje�i yÞ ei f=2 þ jlijjljjei f
: (37)

Common-phase variations in the system matrix ST affect only the common phase of the
eigenvalues and, since the eigenvectors are unaffected, influence energy flows only through
variations in ggH: In terms of the function Gðy;fÞ; these variations correspond to constant f and
have loci in the y;f plane which form lines parallel to the y-axis. Examples are shown in Fig. 5.
The characteristics of ensemble variations in the phase separation f between pairs of

eigenvalues are determined by the strength of eigenvalue repulsion, which is loosely determined by
the strength of connection between wave components in the structure. When the eigenvalue
repulsion is strong, eigenvalue phase separations vary little over the ensemble and general
ensemble phase variations are closely approximated by common phase variations alone. In
structures which have weaker eigenvalue repulsion, the loci may form broader bands parallel to
the y-axis.

5.1.2. Ensemble characteristics of the full matrix ggH

The qualitative features of ggH as a whole depend on both the variations of individual entries
and the correlations between entries. These are illustrated in this section by reference to two
idealised example structures, (a) and (b), over which the damping, connection strength and
eigenvalue repulsion are assumed uniform. All eigenvalues have the same magnitude, given in
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terms of an attenuation parameter m by jlj ¼ expð�mÞ; and the repulsion between any pair of
eigenvalues is the same. In structure (a), the eigenvalue repulsion is very strong and the phase
separation between adjacent eigenvalues, given by 2p=n; is constant over the ensemble. The
common component of phase is random and uniformly distributed in ½�p; p�: In structure (b), the
eigenvalue repulsion is very weak and the individual eigenvalue phases are independent random
variables, uniformly distributed in ½�p; p�: The effects of different damping levels on the form of
ggH will be examined for each type of structure.
In structures with heavy to moderate damping, ensemble variations in the entries of ggH and the

difference in magnitude between the largest and smallest entry are generally small. Examples are
shown in Fig. 6. The form shown in Fig. 6(a), in which ggH is dominated by diagonal or near-
diagonal entries corresponding to the small number of adjacent eigenvalues which have phases
closest to zero, is typical of structures with strong eigenvalue repulsion. For structures with weak
eigenvalue repulsion (Fig. 6(b)), the phases of the eigenvalues are approximately independent and
correlation between the entries of ggH over the ensemble is reduced. For most ensemble members,
the magnitudes of the entries are smaller than the maximum observed when the eigenvalue
repulsion is strong. For some, and possibly many ensemble members, no eigenvalue phase is near
zero and the system is far from resonance.
In lightly damped structures, the function G has a distinct, narrow peak and the magnitudes of

the entries of ggH vary considerably over the ensemble. When the eigenvalue repulsion is strong,
ggH is dominated by diagonal entries corresponding to the small number of eigenvalues close to
unity. This is illustrated in Figs. 7(a), 8(a) and 9(a), for structures at, close to and far from
resonance, respectively. When the eigenvalue repulsion is weak, the possibility arises of there
being more than one eigenvalue with a phase near zero and the presence, as shown in Fig. 7(b), of
a number of diagonal and corresponding off-diagonal entries with large magnitudes. The
probability that more than one eigenvalue phase is close to zero is generally small, however, and
the example in Fig. 7(b) is not typical—most ‘at resonance’ ensemble members have only a single
eigenvalue with zero phase. Weak repulsion also leads to the possibility, illustrated in Fig. 9(b), of
0
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Fig. 6. Example magnitudes of the entries of ggH corresponding to moderate damping (m ¼ 0:2) in structures with

(a) strong eigenvalue repulsion and (b) weak eigenvalue repulsion.
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resonance with (a) strong eigenvalue repulsion and (b) weak eigenvalue repulsion.
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with (a) strong eigenvalue repulsion and (b) weak eigenvalue repulsion.
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structures in which none of the eigenvalues have phases near zero. This situation, in which all

entries of ggH have very small magnitudes, cannot occur if the eigenvalue repulsion is strong.
Although structures close to and far from resonance (Figs. 8 and 9) occur frequently in the

ensemble, the average ensemble response is dominated by the large contributions associated with
resonant structures (Fig. 7).

5.2. Eigenvector-related influences

Eq. (34) shows that the energy flow depends on the eigenvectors of ST through the factor

ðUy�  V
�
x�Þ

H
ðUy�  V

�
x�Þ: (38)

By definition, UH ¼ V�1; so that for normal system matrices, U ¼ V: This last equality holds for
all systems without damping and approximately for systems with light damping. It also holds
exactly for the pair of coupled one-dimensional subsystems considered earlier, for all levels of
damping, if the magnitudes of the two subsystem reflection coefficients sA and sB are the same.
If it is assumed that U and V are approximately equal, then

ðUy�  V
�
x�Þ

H
	 ½v�yj vxj�; j ¼ 1; 2; . . . n; (39)

where V ¼ ½vij�: The magnitudes of the entries in this vector then reflect the extent of the
involvement of both wave components, x in the responding subsystem X and y in the directly
excited subsystem Y. This situation is analogous to that in traditional modal descriptions of
dynamic response, where the contribution made by a mode to the total response depends on the
amplitudes of the mode at both the excitation and response locations.

5.3. Discussion

As noted above, the sensitivity of the energy flow to variations in structural properties can be
largely attributed to the sensitivity of ggH; through the phases of the eigenvalues, to these variations.
Changes in the magnitudes of the eigenvalues and in the eigenvectors generally have smaller effects.
For structures in which the eigenvalue repulsion is strong, variations in the phases of the

eigenvalues involve almost exclusively variations in the common component of phase, y:
Eigenvalue repulsion in a structure is largely determined by the strengths of connections between
wave components and has its greatest influence on the response of moderately or lightly damped
structures. It is one of the factors that determine the likely distribution of the magnitudes of the
entries in ggH for any ensemble member, and the number of eigenvalues which may then play a
significant role in determining the response of the structure. This number varies more widely when
the eigenvalue repulsion is weak.
6. The scalar random phase ensemble

In the sections above, the energy response of a structure has been described in terms of a system
matrix ST and its eigenvalues and eigenvectors. Uncertainty in the properties of the structure then
leads to the concept of an ensemble of structures over which the eigenvalues and eigenvectors of
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ST are assumed to vary randomly. The relationship between variations in structural properties
and the eigenvalues and eigenvectors, and the dependence of the response of the structure on
variations in the eigenvalues and eigenvectors, were then described in Sections 4 and Section 5.
In this section, an ensemble, the ‘scalar random phase’ ensemble, is defined in terms of the

spectral properties of its member structures. Response statistics over this ensemble are believed to
closely approximate those of many realistic ensembles when significant uncertainty is involved.
Statistical moments of the response over this ensemble can be found at low computational cost by
analytical, or mostly analytical, evaluation of the integral in Eq. (13).

6.1. Definition of the scalar random phase ensemble

It has been observed in Section 5 that, for the majority of structures, large variations in energy
flow are most closely associated with changes in the phases of eigenvalues and, particularly, with
changes in the common component of these phases.
If the subsystems are fairly uniform, then significant scattering of wave components occurs only

at the junctions between subsystems, and eigenvalues are typically associated with the
propagation of wave components over distances as large, or larger than, a single subsystem.
For complex structures of the kind being considered here, subsystem dimensions are generally
much larger than the wavelengths of the wave components. Since ensemble variations in these
dimensions are also significant compared to these wavelengths, ensemble variations in phases of
the eigenvalues are generally large compared to 2p: The energy flow depends only on the phases
modulo 2p; however, so that the distribution of phase of any individual eigenvalue over the
ensemble may be expected to be random and approximately uniformly distributed in ½�p;p�:
It may also be anticipated that the common component of eigenvalue phase is random and

uniformly distributed in ½�p;p�: Although this does not follow strictly from the observation that
individual phases are distributed in this way (because the phases are generally correlated over the
ensemble), a number of observations can be made which support the validity of this proposal.
For structures in which the eigenvalue repulsion is very strong, the phase spacing between eigenvalues

is approximately constant over the ensemble and the assumption of the uniform distribution of the
common phase in ½�p; p� follows immediately. For structures in which the eigenvalue repulsion is very
weak, on the other hand, the eigenvalue phases are independent random variables. It can be shown that
if the damping is not too heavy and the system matrix ST is approximately unitary, then the common
eigenvalue phase is approximately uniformly distributed in ½�p; p�:
An ensemble of structures is therefore proposed, in which systemmatrices have the form eiyST; where

ST is the nominal system matrix associated with the structure at hand and y is random and uniformly
distributed in ½�p;p�: This ensemble, over which the magnitudes of the eigenvalues and the eigenvectors
are assumed not to vary, will be referred to as the ‘scalar random phase’, or ‘scalar’ ensemble.

6.2. Estimation of moments

As described in Section 3, an ensemble of structures can be described in terms of the joint
probability density function f ðxÞ of its uncertain parameters x ¼ ½xi�: Although the kth moment of
a response quantity PðxÞ can be found in principle from this density function through Eq. (13),
direct evaluation of the integral in this equation is impractical for most structures. An alternative
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approach is described here which involves separation of the integral into two parts, of which one
can be evaluated analytically and the other can be found by numerical methods.
It is possible to transform the parameters x into an alternative representation of the form ðy;0Þ;

where y is the scalar common phase and the vector 0 corresponds to parameters orthogonal to y:
With this transformation, the general expression for the moments of PðxÞ can be written as

PðkÞ ¼

Z Z
Pkðy;0Þ f ðy; 0Þdyd0: (40)

If y is uniformly distributed in ½�p; p�; then f ðy; 0Þ ¼ f ð0Þ = 2p and Eq. (40) becomes

PðkÞ ¼

Z
hPkðy; 0Þiy f ð0Þd0; (41)

where

hPkðy; 0Þiy ¼
1

2p

Z p

�p
Pkðy;0Þdy: (42)

The quantity hPkðy; 0Þiy is the average of Pkðy;0Þ over the scalar ensemble and Eq. (41) gives the
expected value of hPkðy;0Þiy over the remaining parameters 0:
Of greatest interest here are the average and the variance of energy flow over the ensemble. It

will be demonstrated in the following sections that Eq. (42) can be evaluated analytically for low-
order moments of the response over the scalar ensemble.

6.3. Ensemble-averaged energy flow

Variations in energy flow over the scalar ensemble are associated solely with variations in the
outer product ggH through changes in the common component y of the eigenvalue phases. The
average of ggH over y in the interval ½�p;p� is given by

hggHiy ¼
1

1� li l
�
j

" #
: (43)

The scalar ensemble average of the incident power in subsystem X due to excitation in Y, found by
substituting Eq. (43) into Eq. (32), is given by

hPinc; XY iy ¼
1
2
diagðVX� ½ ðU

H
Y� eYe

H
Y UY�Þ  hgg

Hiy �V
H
X� Þ: (44)

Since the junction power lost by subsystem X to neighbouring subsystems is given by

Pjunc; XY ¼ PT
inc;XY diagðI�D2

X Þ (45)

and D2
X is assumed constant over the ensemble, the scalar ensemble average of this power is

hPjunc; XY iy ¼ hPT
inc; XY iy diagðI�D2

X Þ: (46)

The ensemble averages of other energy-related quantities over the scalar ensemble can be found in
a similar way.
Ensembles other than the scalar ensemble may involve more general variations including

variations in the eigenvalue phase separations, the eigenvalue magnitudes and the eigenvectors.
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Since, for many structures, it is not possible to characterise these variations or to analytically
evaluate the expectation of the scalar ensemble average with respect to the uncertain parameters 0
as expressed in Eq. (41), it is anticipated that numerical techniques will be required.
6.4. Variance of energy flow

The variance of the response quantity P is given in terms of first and second moments by
Var½P� ¼ Pð2Þ � Pð1Þ 2: Response quantities such as the junction power or the subsystem energies
are linear functions of the incident powers, Pinc: Since these functions are assumed not to vary
over the ensemble, their second moments are related through constants to the covariance matrix
of the incident powers. For example, consider again the junction power lost by subsystem X to
neighbouring subsystems given by Eq. (45). The squared junction power can be written as

P 2
junc; XY ¼ diagðI�D2

X Þ
T LdiagðI�D2

X Þ; (47)

where L ¼ Pinc;XY PT
inc;XY is the incident power covariance matrix. Since D2

X is assumed constant
over the ensemble, the second moment of the junction power can be found from the expected
value of L through Eq. (47).
Variations in L over the scalar ensemble arise from variations in the common phases of

eigenvalues in Pinc;XY through the matrix ggH: The incident power associated with an individual
wave component x in subsystem X can be found from Eq. (32) to be given by

Pinc; xY ¼ 1
2
Vx� ½ ðyy

HÞ  ðggHÞ �VH
x�; (48)

where y ¼ UH
Y� eY : It then follows that the entries of L ¼ ½lij� have the form

lij ¼ Vi� ½ðyy
HÞ  ðggHÞ�VH

i� Vj� ½ðyy
HÞ  ðggHÞ�VH

j�=4: (49)

A number of operations involving the ‘vec’ operator (which ‘stacks’ the columns of its matrix
argument) and the Kronecker product1 [14] can be used to gather eigenvalue- and eigenvector-
related factors. Applying the ‘vec’ operator to both sides of Eq. (49) and using a standard result
relating to Kronecker products2 yields

lij ¼ ðV �
j� � Vi�Þ ð½ðgg

HÞ
T
� ðggHÞ�  ½ðyyHÞT � ðyyHÞ�Þ ðV �

j� � Vi�Þ
H=4; (50)

where it has been noted that vecðVH
i� Vj�Þ ¼ ðV �

j� � Vi�Þ
H:

Since the scalar ensemble only involves variations of ggH; variations in lij over the same
ensemble depend only on ðggHÞT � ðggHÞ; which, if ggH is of order n � n; is of order n2 � n2: Each
1The Kronecker product of two matrices A and B; denoted by A� B; is defined as the block matrix

A� B ¼

a11B a12B � � � a1nB

a21B a22B � � � a2nB

..

. ..
. ..

.

am1B am2B � � � amnB

2
6666664

3
7777775

where A ¼ ½aij � is of order m � n:
2For matrices A; B and Y; vecðAYBÞ ¼ ðBT � AÞ vecY:
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entry of this larger matrix depends on four (not necessarily distinct) eigenvalues and has the
general form

1

ð1� liÞ ð1� l�j Þ ð1� lkÞ ð1� l�l Þ
; (51)

where, for entry ðp; qÞ of ðggHÞT � ðggHÞ;

p ¼ ðj � 1Þ n þ k and q ¼ ði � 1Þ n þ l; (52)

with i; j; k; l ¼ 1; . . . ; n and p; q ¼ 1; . . . ; n2:
Since only variation in the common phase of the eigenvalues is of interest, it is convenient to

consider the function

f ðeiyÞ ¼
1

ð1� li eiyÞ ð1� l�j e�iyÞ ð1� lk eiyÞ ð1� l�l e�iyÞ
: (53)

The average of this function over y in the interval ½�p;p� is given by

hf ðeiyÞiy ¼
1� li l

�
j lk l

�
l

ð1� li l
�
j Þ ð1� lk l

�
j Þ ð1� li l

�
l Þ ð1� lk l

�
l Þ
: (54)

The scalar ensemble average hðggHÞT � ðggHÞiy then follows from the index relationships given
in Eq. (52). This average replaces ðggHÞT � ðggHÞ in Eq. (50) to give the corresponding averages of
L and the squared junction power given in Eq. (47). The variance of the junction power over the
scalar ensemble is then given by

Var½Pjunc; XY �y ¼ hP 2
junc; XY iy � hPjunc; XY i

2
y: (55)

As with the estimation of the average of the energy flow over the general ensemble from the
averages over scalar ensembles, the variance over the general ensemble can be found from the
expected value of scalar ensemble variances, as given in Eq. (41). It is again anticipated that
numerical methods will be required for this task.
7. Concluding remarks

A computationally efficient method has been presented for the estimation of the response
statistics of complex structures. The vibration field is described in terms of wave components, and
the wave component transmission and reflection characteristics of the structure are quantified in a
pair of subsystem and junction global scattering matrices, S and T: Uncertainty is introduced
through the concept of an ensemble of structures which differ randomly in detail, and the
eigenproperties of the matrix product ST are assumed to be random variables.
Examination of the relationships between typical ensemble variations in the eigenproperties of

ST and the response of any structure indicates that, of all the eigenproperties, response variations
are most closely associated with variations in the common component of the eigenvalue phases. A
‘scalar random phase’ ensemble is proposed in which the common phase of the eigenvalues is
random and uniformly distributed in ½�p; p�; and the other eigenproperties remain constant. Low-
order statistical moments of structural response over this ensemble are thought to closely resemble
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those of many real ensembles, particulary those involving strong eigenvalue repulsion (for
example, those with strong irregular connections between irregular subsystems).
Analytical expressions are given for the average and variance of energy responses over the

scalar ensemble. For ensembles of structures less well represented by this ensemble (those with less
strong eigenvalue repulsion, for example), the analytical estimates of average and variance can be
improved by Monte Carlo simulation with a relatively small sample size. The computational cost
of this improvement is expected to be very small because, although low-order moments of the
response statistics are dominated by the effects of the generally small number of resonant
members of the ensemble, the analytical scalar ensemble estimates vary relatively slowly and can
be quickly numerically integrated. A strong similarity exists between averaging over the scalar
ensemble and averaging with respect to frequency [12].
In principle, the method can be applied to a wide variety of structures, so long as the cross-

sections at which energy flows are evaluated are not so close together that there is significant
power transport associated with near-field interactions. A more important limitation in practice
may be that associated with the determination of scattering matrices for structures of general
form. In view of the fundamental uncertainty involved in the applications for which this approach
is designed, detailed calculation of these matrices is not warranted.
Application of the present approach to regular and irregular two-plate structures, and good

agreement between the averages and variances of energy flows predicted by the method and the
results of numerical simulations, are demonstrated in a companion paper [5].
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